|
Вещественный, комплексный и и функциональный анализ
Toric Morphisms and Diagonals of the Laurent Series of Rational Functions
[Toric morphisms and diagonals of the Laurent series of rational functions]
D. Yu. Pochekutov, A. V. Senashov School of Mathematics and Computer Science, Siberian Federal University, Krasnoyarsk, 660041, Russia
Аннотация:
We consider the Laurent series of a rational function in $n$ complex variables and the $n$-dimensional sequence of its coefficients. The diagonal subsequence of this sequence generates the so-called complete diagonal of the Laurent series. We give a new integral representation for the complete diagonal. Based on this representation, we give a sufficient condition for a diagonal to be algebraic.
Ключевые слова:
algebraic function, diagonal of Laurent series, generating function, integral representations, toric morphism.
Поступила 1 февраля 2022 г., опубликована 2 сентября 2022 г.
Образец цитирования:
D. Yu. Pochekutov, A. V. Senashov, “Toric Morphisms and Diagonals of the Laurent Series of Rational Functions”, Сиб. электрон. матем. изв., 19:2 (2022), 651–661
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/semr1528 https://www.mathnet.ru/rus/semr/v19/i2/p651
|
|