|
Дискретная математика и математическая кибернетика
The vertex connectivity of some classes of divisible design graphs
D. I. Panasenkoab a Chelyabinsk State University, 129, Bratiev Kashirinykh str., Chelyabinsk, 454001, Russia
b N.N. Krasovskii Institute of Mathematics and Mechanics, 16, S. Kovalevskaya str., Yekaterinburg, 620108, Russia
Аннотация:
A $k$-regular graph is called a divisible design graph if its vertex set can be partitioned into $m$ classes of size $n$, such that two distinct vertices from the same class have exactly $\lambda_1$ common neighbours, and two vertices from different classes have exactly $\lambda_2$ common neighbours. In this paper, we find the vertex connectivity of some classes of divisible design graphs, in particular, we present examples of divisible design graphs, whose vertex connectivity is less than $k$, where $k$ is the degree of a vertex. We also show that the vertex connectivity of one series of divisible design graphs may differ from k by any power of $2$.
Ключевые слова:
Deza graph, divisible design graph, strongly regular graph, vertex connectivity.
Поступила 6 марта 2022 г., опубликована 17 августа 2022 г.
Образец цитирования:
D. I. Panasenko, “The vertex connectivity of some classes of divisible design graphs”, Сиб. электрон. матем. изв., 19:2 (2022), 426–438
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/semr1513 https://www.mathnet.ru/rus/semr/v19/i2/p426
|
|