|
Теория вероятностей и математическая статистика
On detecting alternatives by one-parametric recursive residuals
A. I. Sakhanenkoab a Novosibirsk State University, 2, Pirogova str., Novosibirsk, 630090, Russia
b Sobolev Institute of Mathematics, 4, Acad. Koptyug ave., 630090, Novosibirsk, Russia
Аннотация:
We consider a linear regression model with one unknown parameter which is estimated by the least squares method. We suppose that, in reality, the given observations satisfy a close alternative to the linear regression model. We investigate the limiting behaviour of the normalized process of sums of recursive residuals. Such residuals were introduced by Brown, Durbin and Evans (1975) and their sums are a convenient tool for detecting discrepancy between observations and the studied model. In particular, under less restrictive assumptions we generalize a key result from Bischoff (2016).
Ключевые слова:
linear regression, recursive residuals, weak convergence, Wiener process, close alternative.
Поступила 4 октября 2021 г., опубликована 30 мая 2022 г.
Образец цитирования:
A. I. Sakhanenko, “On detecting alternatives by one-parametric recursive residuals”, Сиб. электрон. матем. изв., 19:1 (2022), 292–308
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/semr1500 https://www.mathnet.ru/rus/semr/v19/i1/p292
|
|