|
Эта публикация цитируется в 4 научных статьях (всего в 4 статьях)
Математическая жизнь
An overview of the Eight International Olympiad in Cryptography “Non-Stop University CRYPTO”
A. A. Gorodilovaa, N. N. Tokarevaa, S. V. Agievichb, I. I. Beterovcd, T. Beynee, L. Budaghyanf, C. Carletgf, S. Dhooghee, V. A. Idrisovaa, N. A. Kolomeeca, A. V. Kutsenkoa, E. S. Malyginah, N. Mouhai, M. A. Pudovkinaj, F. Sicak, A. N. Udovenkol a Sobolev Institute of Mathematics, 4, Acad. Koptyug ave., Novosibirsk, 630090, Russia
b Belarusian State University, 4, Nezavisimosti ave., Minsk, 220030, Belarus
c Rzhanov Institute of Semiconductor Physics, 13, Lavrentiev ave., 630090, Novosibirsk, Russia
d Novosibirsk State University, 1, Pirogova str., Novosibirsk, 630090, Russia
e imec-COSIC, ESAT Kasteelpark Arenberg 10, Leuven-Heverlee, B-3001, Belgium
f Department of Informatics, University of Bergen, Postboks 7803, Bergen, N-5020, Norway
g University of Paris 8, 2, rue de la Liberté, Saint-Denis, 93526, France
h Immanuel Kant Baltic Federal University, 4, A. Nevskogo str., Kaliningrad, 236016, Russia
i Strativia, 1401 Mercantile Lane, Suite 501, Largo, MD 20774, United States
j National Research Nuclear University MEPhI, 31, Kashirskoe ave., Moscow, 115409, Russia
k Nazarbayev University, 53, Kabanbay Batyr ave., Nur-Sultan, 010000, Kazakhstan
l CryptoExperts, 41, Boulevard des Capucines, Paris, 75002, France
Аннотация:
Non-Stop University CRYPTO is the International Olympiad in Cryptography that was held for the eight time in 2021. Hundreds of university and school students, professionals from 33 countries worked on mathematical problems in cryptography during a week. The aim of the Olympiad is to attract attention to curious and even open scientific problems of modern cryptography. In this paper, problems and their solutions of the Olympiad'2021 are presented. We consider 19 problems of varying difficulty and topics: ciphers, online machines, passwords, binary strings, permutations, quantum circuits, historical ciphers, elliptic curves, masking, implementation on a chip, etc. We discuss several open problems on quantum error correction, finding special permutations and s-Boolean sharing of a function, obtaining new bounds on the distance to affine vectorial functions.
Ключевые слова:
cryptography, ciphers, masking, quantum error correction, electronic voting, permutations, s-Boolean sharing, orthogonal arrays, Olympiad, NSUCRYPTO.
Поступила 6 мая 2022 г., опубликована 26 мая 2022 г.
Образец цитирования:
A. A. Gorodilova, N. N. Tokareva, S. V. Agievich, I. I. Beterov, T. Beyne, L. Budaghyan, C. Carlet, S. Dhooghe, V. A. Idrisova, N. A. Kolomeec, A. V. Kutsenko, E. S. Malygina, N. Mouha, M. A. Pudovkina, F. Sica, A. N. Udovenko, “An overview of the Eight International Olympiad in Cryptography “Non-Stop University CRYPTO””, Сиб. электрон. матем. изв., 19:1 (2022), А.9–А.37
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/semr1488 https://www.mathnet.ru/rus/semr/v19/i1/p9
|
Статистика просмотров: |
Страница аннотации: | 299 | PDF полного текста: | 32 | Список литературы: | 24 |
|