|
Математическая логика, алгебра и теория чисел
Uniform $m$-equivalences and numberings of classical systems
N. Kh. Kasymov, R. N. Dadazhanov, S. K. Zhavliev National University of Uzbekistan, 4, University str., Tashkent, 100174, Uzbekistan
Аннотация:
The paper considers the representability of algebraic structures (groups, lattices, semigroups, etc.) over equivalence relations on natural numbers. The concept of a (uniform) $m$-equivalence is studied. It is proved that the numbering equivalence of any numbered group is a uniform $m$-equivalence. On the other hand, we construct an example of a uniform $m$-equivalence over which no group is representable. Additionally we show that there exists a positive equivalence over which no upper (lower) semilattice is representable.
Ключевые слова:
uniform $m$-equivalence, group, lattice, field.
Поступила 18 марта 2021 г., опубликована 19 января 2022 г.
Образец цитирования:
N. Kh. Kasymov, R. N. Dadazhanov, S. K. Zhavliev, “Uniform $m$-equivalences and numberings of classical systems”, Сиб. электрон. матем. изв., 19:1 (2022), 49–65
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/semr1480 https://www.mathnet.ru/rus/semr/v19/i1/p49
|
|