|
Эта публикация цитируется в 2 научных статьях (всего в 2 статьях)
Дискретная математика и математическая кибернетика
Minimum weight bases for quaternary Reed – Muller codes
F. I. Solov'eva Sobolev Institute of Mathematics, 4, Acad. Koptyuga ave., Novosibirsk, 630090, Russia
Аннотация:
The quaternary Plotkin and BQ-Plotkin constructions giving the families of quaternary Reed – Muller codes were presented in 2009. The Gray map image of the obtained $\mathbb{Z}_4$-linear codes have the same parameters and fundamental properties as the codes in the classical binary linear Reed – Muller family. We have found one more general property for the families of quaternary Reed – Muller codes that is common with binary Reed – Muller codes: all these quaternary codes have bases of minimum weight codewords. The bases are constructed by induction.
Ключевые слова:
Reed – Muller code, quaternary code, additive code, quaternary Reed – Muller code, minimum weight basis, $\mathbb{Z}_4$-linear code.
Поступила 12 декабря 2020 г., опубликована 24 ноября 2021 г.
Образец цитирования:
F. I. Solov'eva, “Minimum weight bases for quaternary Reed – Muller codes”, Сиб. электрон. матем. изв., 18:2 (2021), 1358–1366
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/semr1444 https://www.mathnet.ru/rus/semr/v18/i2/p1358
|
|