|
Геометрия и топология
The volume of a spherical antiprism with $S_{2n}$ symmetry
N. Abrosimovabc, B. Vuongbc a Sobolev Institute of Mathematics,
4, Koptyuga ave.,
Novosibirsk, 630090, Russia
b Regional Scientific and Educational Mathematical Center,
Tomsk State University,
36, Lenina ave.,
Tomsk, 634050, Russia
c Novosibirsk State University, 1, Pirogova str., Novosibirsk, 630090, Russia
Аннотация:
We consider a spherical antiprism. It is a convex polyhedron with $2n$ vertices in the spherical space $\mathbb{S}^3$. This polyhedron has a group of symmetries $S_{2n}$ generated by a mirror-rotational symmetry of order $2n$, i.e. rotation to the angle $\pi/n$ followed by a reflection. We establish necessary and sufficient conditions for the existence of such polyhedron in $\mathbb{S}^3$. Then we find relations between its dihedral angles and edge lengths in the form of cosine rules through a property of a spherical isosceles trapezoid. Finally, we obtain an explicit integral formula for the volume of a spherical antiprism in terms of the edge lengths.
Ключевые слова:
spherical antiprism, spherical volume, symmetry group $S_{2n}$, rotation followed by reflection, spherical isosceles trapezoid.
Поступила 17 октября 2021 г., опубликована 9 ноября 2021 г.
Образец цитирования:
N. Abrosimov, B. Vuong, “The volume of a spherical antiprism with $S_{2n}$ symmetry”, Сиб. электрон. матем. изв., 18:2 (2021), 1165–1179
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/semr1429 https://www.mathnet.ru/rus/semr/v18/i2/p1165
|
|