|
Эта публикация цитируется в 2 научных статьях (всего в 2 статьях)
Дискретная математика и математическая кибернетика
Об одном классе вершинно-транзитивных дистанционно регулярных накрытий полных графов
Л. Ю. Циовкина Krasovsky Institute of Mathematics and Mechanics of the Ural Branch of the Russian Academy of Sciences, 16, S. Kovalevskaya str., Yekaterinburg, 620990, Russia
Аннотация:
In this paper, we investigate the problem of classification of abelian antipodal distance-regular graphs $\Gamma$ of diameter three with the following property $(*)$: there is a vertex-transitive group of automorphisms $G$ of $\Gamma$ which induces an almost simple primitive permutation group $G^{\Sigma}$ on the set $\Sigma$ of antipodal classes of $\Gamma$. This problem has been recently solved in the case when the permutation rank $\mathrm{rk}(G^{\Sigma})$ of $G^{\Sigma}$ equals $2$ (which implies classification of all arc-transitive representatives). Here we start to study the next case $\mathrm{rk}(G^{\Sigma})=3$. We elaborate a method of reduction to minimal quotients of $\Gamma$, which gives us a base for a classification scheme that depends on a type of such quotient. By analysing equitable partitions of $\Gamma$ which arise as collections of orbits of some subgroups of $G$, we obtain several strong restrictions on spectra and parameters of $\Gamma$ as well as a description of its minimal quotients. This allows us to settle the case when the socle of $G^{\Sigma}$ is a sporadic simple group.
Ключевые слова:
distance-regular graph, antipodal cover, abelian cover, vertex-transitive graph, rank $3$ group.
Поступила 16 марта 2021 г., опубликована 2 июля 2021 г.
Образец цитирования:
Л. Ю. Циовкина, “Об одном классе вершинно-транзитивных дистанционно регулярных накрытий полных графов”, Сиб. электрон. матем. изв., 18:2 (2021), 758–781
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/semr1398 https://www.mathnet.ru/rus/semr/v18/i2/p758
|
|