|
Эта публикация цитируется в 4 научных статьях (всего в 4 статьях)
Дифференциальные уравнения, динамические системы и оптимальное управление
Multiscale analysis of a model problem of a thermoelastic body with thin inclusions
S. A. Sazhenkovab, I. V. Frankinaca, A. I. Furtsevac, P. V. Gilevd, A. G. Goryninb, O. G. Goryninae, V. M. Karnaevb, E. I. Leonovad a Lavrentyev Institute of Hydrodynamics, 15, Acad. Lavrentyeva ave., Novosibirsk, 630090, Russia
b Novosibirsk State University, 1, Pirogova str., 630090 Novosibirsk, Russia
c Sobolev Institute of Mathematics, 4, Acad. Koptyuga ave., Novosibirsk, 630090, Russia
d Laboratory for Mathematical and Computer Modeling in Natural and Industrial Systems, Institute of Mathematics & Information Technologies, Altai State University, 61, Lenina ave., Barnaul, 656049 Russia
e Ècole Des Pontes et Chaussees, 6-8 Avenue Blaise Pascal, Cité Descartes, 77455 Champs-sur-Marne, Marne la Vallée cedex 2, France
Аннотация:
A model statical problem for a thermoelastic body with thin inclusions is studied. This problem incorporates two small positive parameters $\delta$ and $\varepsilon$, which describe the thickness of an individual inclusion and the distance between two neighboring inclusions, respectively. Relying on the variational formulation of the problem, by means of the modern methods of asymptotic analysis, we investigate the behavior of solutions as $\delta$ and $\varepsilon$ tend to zero. As the result, we construct two models corresponding to the limiting cases. At first, as $\delta \to 0$, we derive a limiting model in which inclusions are thin (of zero diameter). Then, from this limiting model, as $\varepsilon \to 0$, we derive a homogenized model, which describes effective behavior on the macroscopic scale, i.e., on the scale where there is no need to take into account each individual inclusion. The limiting passage as $\varepsilon \to 0$ is based on the use of homogenization theory. The final section of the article presents a series of numerical experiments for the established limiting models.
Ключевые слова:
linear thermoelasticity, composite material, thin inclusion,
homogenization, two-scale convergence, generalized solution, numerical
experiment.
Поступила 29 февраля 2020 г., опубликована 23 марта 2021 г.
Образец цитирования:
S. A. Sazhenkov, I. V. Frankina, A. I. Furtsev, P. V. Gilev, A. G. Gorynin, O. G. Gorynina, V. M. Karnaev, E. I. Leonova, “Multiscale analysis of a model problem of a thermoelastic body with thin inclusions”, Сиб. электрон. матем. изв., 18:1 (2021), 282–318
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/semr1361 https://www.mathnet.ru/rus/semr/v18/i1/p282
|
Статистика просмотров: |
Страница аннотации: | 221 | PDF полного текста: | 135 | Список литературы: | 34 |
|