|
Эта публикация цитируется в 1 научной статье (всего в 1 статье)
Математическая логика, алгебра и теория чисел
Repetition-free and infinitary analytic calculi for first-order rational Pavelka logic
A. S. Gerasimov Peter the Great St.Petersburg Polytechnic University (SPbPU), 29, Polytechnicheskaya str., St. Petersburg, 195251, Russia
Аннотация:
We present an analytic hypersequent calculus $\mathrm{G}^3$Ł$\forall$ for first-order infinite-valued Łukasiewicz logic Ł$\forall$ and for an extension of it, first-order rational Pavelka logic $\mathrm{RPL}\forall$; the calculus is intended for bottom-up proof search. In $\mathrm{G}^3$Ł$\forall$, there are no structural rules, all the rules are invertible, and designations of multisets of formulas are not repeated in any premise of the rules. The calculus $\mathrm{G}^3$Ł$\forall$ proves any sentence that is provable in at least one of the previously known analytic calculi for Ł$\forall$ or $\mathrm{RPL}\forall$, including Baaz and Metcalfe's hypersequent calculus $\mathrm{G}$Ł$\forall$ for Ł$\forall$. We study proof-theoretic properties of $\mathrm{G}^3$Ł$\forall$ and thereby provide foundations for proof search algorithms. We also give the first correct proof of the completeness of the $\mathrm{G}$Ł$\forall$-based infinitary calculus for prenex Ł$\forall$-sentences, and establish the completeness of a $\mathrm{G}^3$Ł$\forall$-based infinitary calculus for prenex $\mathrm{RPL}\forall$-sentences.
Ключевые слова:
many-valued logic, mathematical fuzzy logic, first-order infinite-valued Łukasiewicz logic, first-order rational Pavelka logic, proof theory, hypersequent calculus, proof search, infinitary calculus.
Поступила 30 марта 2020 г., опубликована 18 ноября 2020 г.
Образец цитирования:
A. S. Gerasimov, “Repetition-free and infinitary analytic calculi for first-order rational Pavelka logic”, Сиб. электрон. матем. изв., 17 (2020), 1869–1899
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/semr1321 https://www.mathnet.ru/rus/semr/v17/p1869
|
|