|
Дискретная математика и математическая кибернетика
Soft $3$-stars in sparse plane graphs
O. V. Borodina, A. O. Ivanovab a Sobolev Institute of Mathematics, 4, Koptyuga ave., Novosibirsk, 630090, Russia
b Ammosov North-Eastern Federal University, 48, Kulakovskogo str., Yakutsk, 677000, Russia
Аннотация:
We consider plane graphs with large enough girth $g$, minimum degree $\delta$ at least $2$ and no $(k+1)$-paths consisting of vertices of degree $2$, where $k\ge1$. In 2016, Hudák, Maceková, Madaras, and Široczki studied the case $k=1$, which means that no two $2$-vertices are adjacent, and proved, in particular, that there is a $3$-vertex whose all three neighbors have degree $2$ (called a soft $3$-star), provided that $g\ge10$, which bound on $g$ is sharp. For the first open case $k=2$ it was known that a soft $3$-star exists if $g\ge14$ but may not exist if $g\le12$. In this paper, we settle the case $k=2$ by presenting a construction with $g=13$ and no soft $3$-star. For all $k\ge3$, we prove that soft $3$-stars exist if $g\ge4k+6$ but, as follows from our construction, possibly not exist if $g\le3k+7$. We conjecture that in fact soft $3$-stars exist whenever $g\ge3k+8$.
Ключевые слова:
plane graph, structure properties, girth, tight description, weight, height, $3$-star, soft $3$-star.
Поступила 4 сентября 2020 г., опубликована 18 ноября 2020 г.
Образец цитирования:
O. V. Borodin, A. O. Ivanova, “Soft $3$-stars in sparse plane graphs”, Сиб. электрон. матем. изв., 17 (2020), 1863–1868
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/semr1320 https://www.mathnet.ru/rus/semr/v17/p1863
|
|