Сибирские электронные математические известия
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Импакт-фактор

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Сиб. электрон. матем. изв.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Сибирские электронные математические известия, 2020, том 17, страницы 1823–1848
DOI: https://doi.org/10.33048/semi.2020.17.124
(Mi semr1318)
 

Геометрия и топология

Measuring the arcs of the orbit of a one-parameter transformation group

I. V. Polikanova

Altai State Pedagogical University, 6(1), Soviet str., Barnaul, 656002, Russia
Список литературы:
Аннотация: In the orbits of the one-parameter transformation group, various geometric structures are introduced by means of bijection with the set of real numbers, in particular, the structure of the Euclidean straight line in the sense used by Hilbert with corresponding concepts: points, half-orbits (an analogue of a ray), an oriented arc (an analogue of a segment with ordered endpoints), the relations of “between” for three points, the equality of oriented arcs and other invariants of the transformation group. It is shown that the measure of arcs, defined as a positive definite additive function that is invariant with respect to the group of transformations, exists and splits into two independent measures which are uniquely defined on the classes of arcs of a similar orientation by setting the standards — one in each class — and coinciding with the measurement results by these standards from different endpoints of the arc. $\lambda$-Congruence permits to measure oppositely oriented arcs using a single standard. In this case, the opposite arcs $ab$ and $ba$ (not $\lambda$-congruent) have different measure values. This circumstance forces us to question the correctness of the known proofs of the existence and uniqueness of the measure of the length of a line-segment in Euclidean space. With $\lambda$-congruence for $\lambda = -1$, the orbit becomes a model of Euclidean straight line.
Ключевые слова: Orbits of a one-parameter group of transformations, midpoint of an arc, equal arcs, length of an arc, invariant with respect to some group of transformations, split-complex numbers (hyperbolic numbers).
Поступила 31 декабря 2019 г., опубликована 12 ноября 2020 г.
Реферативные базы данных:
Тип публикации: Статья
УДК: 514.01
MSC: 51M25
Язык публикации: английский
Образец цитирования: I. V. Polikanova, “Measuring the arcs of the orbit of a one-parameter transformation group”, Сиб. электрон. матем. изв., 17 (2020), 1823–1848
Цитирование в формате AMSBIB
\RBibitem{Pol20}
\by I.~V.~Polikanova
\paper Measuring the arcs of the orbit of a one-parameter transformation group
\jour Сиб. электрон. матем. изв.
\yr 2020
\vol 17
\pages 1823--1848
\mathnet{http://mi.mathnet.ru/semr1318}
\crossref{https://doi.org/10.33048/semi.2020.17.124}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000589412600001}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/semr1318
  • https://www.mathnet.ru/rus/semr/v17/p1823
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Статистика просмотров:
    Страница аннотации:156
    PDF полного текста:28
    Список литературы:22
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024