|
Эта публикация цитируется в 2 научных статьях (всего в 2 статьях)
Математическая логика, алгебра и теория чисел
The property of being a model complete theory is preserved by Cartesian extensions
M. G. Peretyat'kin Institute of Mathematics and Mathematical Modeling, 125, Pushkin str., Almaty, 050010, Kazakhstan
Аннотация:
Cartesian-quotient extensions of theories constitute a most common class of finitary transformation methods for first-order combinatorics. In this paper, some technical properties of classes of algebraic Cartesian and algebraic Cartesian-quotient interpretations of theories are studied. It is established that any algebraic Cartesian interpretation preserves the property of being a model complete theory; besides, an example of an algebraic Cartesian-quotient interpretation of theories is given, which does not preserve the model-completeness property.
Ключевые слова:
first-order logic, incomplete theory, Tarski-Lindenbaum algebra, model-theoretic property, computable isomorphism, Cartesian interpretation, model completeness.
Поступила 2 апреля 2020 г., опубликована 25 сентября 2020 г.
Образец цитирования:
M. G. Peretyat'kin, “The property of being a model complete theory is preserved by Cartesian extensions”, Сиб. электрон. матем. изв., 17 (2020), 1540–1551
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/semr1301 https://www.mathnet.ru/rus/semr/v17/p1540
|
Статистика просмотров: |
Страница аннотации: | 173 | PDF полного текста: | 62 | Список литературы: | 23 |
|