|
Эта публикация цитируется в 3 научных статьях (всего в 3 статьях)
Дискретная математика и математическая кибернетика
An extension of Franklin's Theorem
O. V. Borodin, A. O. Ivanova Sobolev Institute of Mathematics, 4, Koptyuga ave., Novosibirsk, 630090, Russia
Аннотация:
Back in 1922, Franklin proved that every $3$-polytope with minimum degree $5$ has a $5$-vertex adjacent to two vertices of degree at most $6$, which is tight. This result has been extended and refined in several directions.
It is well-known that each $3$-polytope has a vertex of degree at most $5$, called minor vertex. A $3$-path $uvw$ is an $(i,j,k)$-path if $d(u)\le i$, $d(v)\le j$, and $d(w)\le k$, where $d(x)$ is the degree of a vertex $x$. A $3$-path is minor $3$-path if its central vertex is minor.
The purpose of this note is to extend Franklin' Theorem to the $3$-polytopes with minimum degree at least $4$ by proving that there exist precisely the following ten tight descriptions of minor $3$-paths:$\{(6,5,6),(4,4,9),(6,4,8),(7,4,7)\}$, $\{(6,5,6),(4,4,9),(7,4,8)\}$, $\{(6,5,6),(6,4,9),(7,4,7)\}$, $\{(6,5,6),(7,4,9)\}$, $\{(6,5,8),(4,4,9),(7,4,7)\}$,$\{(6,5,9),(7,4,7)\}$, $\{(7,5,7),(4,4,9),(6,4,8)\}$, $\{(7,5,7),(6,4,9)\}$,$\{(7,5,8),(4,4,9)\}$, and $\{(7,5,9)\}$.
Ключевые слова:
planar graph, plane map, $3$-polytope, structure properties, tight description, path, weight.
Поступила 27 марта 2020 г., опубликована 18 сентября 2020 г.
Образец цитирования:
O. V. Borodin, A. O. Ivanova, “An extension of Franklin's Theorem”, Сиб. электрон. матем. изв., 17 (2020), 1516–1521
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/semr1299 https://www.mathnet.ru/rus/semr/v17/p1516
|
Статистика просмотров: |
Страница аннотации: | 190 | PDF полного текста: | 50 | Список литературы: | 23 |
|