|
Теория вероятностей и математическая статистика
On the maximal displacement of catalytic branching random walk
E. Vl. Bulinskaya Novosibirsk State University, 1, Pirogova str., Novosibirsk, 630090, Russia
Аннотация:
We study the distribution of the maximal displacement of particle positions for the whole time of the existence of population in the model of critical and subcritical catalytic branching random walk on $\mathbb{Z}$. In particular, we prove that in the case of simple symmetric random walk on $\mathbb{Z}$, the distribution of the maximal displacement has a "heavy" tail', decreasing as a function of the power $1/2$ or $1$ when the branching process is critical or subcritical, respectively. These statements describe the effects which had not arisen before in related studies on the maximal displacement of critical and subcritical branching random walks on $\mathbb{Z}$.
Ключевые слова:
catalytic branching random walk, critical regime, subcritical regime, maximal displacement, "heavy" tails.
Поступила 15 апреля 2020 г., опубликована 14 августа 2020 г.
Образец цитирования:
E. Vl. Bulinskaya, “On the maximal displacement of catalytic branching random walk”, Сиб. электрон. матем. изв., 17 (2020), 1088–1099
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/semr1276 https://www.mathnet.ru/rus/semr/v17/p1088
|
Статистика просмотров: |
Страница аннотации: | 184 | PDF полного текста: | 51 | Список литературы: | 33 |
|