|
Математическая логика, алгебра и теория чисел
Perceptibility in pre-Heyting logics
L. L. Maksimova, V. F. Yun Sobolev Institute of Mathematics, 4, Koptyuga ave., Novosibirsk, 630090, Russia
Аннотация:
This paper is dedicated to problems of perceptibility and recognizability in pre-Heyting logics, that is, in extensions of the minimal logic J satisfying the axiom $\neg\neg (\bot\rightarrow p)$. These concepts were introduced in [8, 11, 10]. The logic Od and its extensions were studied in [5, 14] and other papers. The semantic characterization of the logic Od and its completeness were obtained in [5]. The formula F and the logic JF were studied in [12]. It was proved that the logic JF has disjunctive and finite-model properties. The logic JF has Craig's interpolation property (established in [17]). The perceptibility of the formula F in well-composed logics is proved in [14]. It is unknown whether the formula F is perceptible over J [8]. We will prove that the formula F is perceptible over the minimal pre-Heyting logic Od and the logic OdF is recognizable over Od.
Ключевые слова:
Recognizability, perceptibility, minimal logic, pre-Heyting logic, Johansson algebra, Heyting algebra, superintuitionistic logic, calculus.
Поступила 24 декабря 2018 г., опубликована 3 августа 2020 г.
Образец цитирования:
L. L. Maksimova, V. F. Yun, “Perceptibility in pre-Heyting logics”, Сиб. электрон. матем. изв., 17 (2020), 1064–1072
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/semr1274 https://www.mathnet.ru/rus/semr/v17/p1064
|
Статистика просмотров: |
Страница аннотации: | 180 | PDF полного текста: | 32 | Список литературы: | 19 |
|