|
Теория вероятностей и математическая статистика
Stochastic stability of a system of perfect integrate-and-fire inhibitory neurons
T. V. Prasolovab a Novosibirsk State University, 1, Pirogova str., Novosibirsk, 630090, Russia
b Mathematical Center in Akademgorodok, 4, Koptyuga ave., Novosibirsk, 630090, Russia
Аннотация:
We study a system of perfect integrate-and-fire inhibitory neurons. It is a system of stochastic processes which interact through receiving an instantaneous increase at the moments they reach certain thresholds. In the absence of interactions, these processes behave as a spectrally positive Lévy processes. Using the fluid approximation approach, we prove convergence to a stable distribution in total variation.
Ключевые слова:
spiking neural network, Lévy process, stability, fluid limits.
Поступила 11 мая 2020 г., опубликована 20 июля 2020 г.
Образец цитирования:
T. V. Prasolov, “Stochastic stability of a system of perfect integrate-and-fire inhibitory neurons”, Сиб. электрон. матем. изв., 17 (2020), 971–987
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/semr1266 https://www.mathnet.ru/rus/semr/v17/p971
|
Статистика просмотров: |
Страница аннотации: | 166 | PDF полного текста: | 43 | Список литературы: | 19 |
|