|
Математическая логика, алгебра и теория чисел
The Tarski-Lindenbaum algebra of the class of all prime strongly constructivizable models of algorithmic dimension one
M. G. Peretyat'kin Institute of Mathematics and Mathematical Modeling, 125, Pushkin str., Almaty, 050010, Kazakhstan
Аннотация:
We study the class of all prime strongly constructivizable models of algorithmic dimension $1$ in a fixed finite rich signature. It is proved that the Tarski-Lindenbaum algebra of this class considered together with a Gödel numbering of the sentences is a Boolean $\Pi^0_3$-algebra whose computable ultrafilters form a dense subset in the set of all ultrafilters; moreover, this algebra is universal with respect to the class of Boolean $\Sigma^0_2$-algebras whose computable ultrafilters represent a dense subset in the set of arbitrary ultrafilters in the algebra. This gives a characterization to the Tarski-Lindenbaum algebra of the class of all prime strongly constructivizable models of algorithmic dimension $1$ in a fixed finite rich signature.
Ключевые слова:
first-order logic, Tarski-Lindenbaum algebra, computable isomorphism, semantic class of models, algorithmic complexity estimate.
Поступила 2 апреля 2020 г., опубликована 9 июля 2020 г.
Образец цитирования:
M. G. Peretyat'kin, “The Tarski-Lindenbaum algebra of the class of all prime strongly constructivizable models of algorithmic dimension one”, Сиб. электрон. матем. изв., 17 (2020), 913–922
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/semr1261 https://www.mathnet.ru/rus/semr/v17/p913
|
Статистика просмотров: |
Страница аннотации: | 164 | PDF полного текста: | 39 | Список литературы: | 16 |
|