|
Эта публикация цитируется в 8 научных статьях (всего в 8 статьях)
Математическая логика, алгебра и теория чисел
On the complexity of the lattices of subvarieties and congruences. II. Differential groupoids and unary algebras
A. V. Kravchenkoabcd, M. V. Schwidefskyabd a Sobolev Institute of Mathematics, 4, Koptyuga ave., Novosibirsk, 630090, Russia
b Novosibirsk State University, 1, Pirogova str., Novosibirsk, 630090, Russia
c Siberian Institute of Management, 6, Nizhegorodskaya str., Novosibirsk, 630102, Russia
d Novosibirsk State Technical University, 20, Karl Marx ave.., Novosibirsk, 630073, Russia
Аннотация:
We prove that certain lattices can be represented as the lattices of relative subvarieties and relative congruences of differential groupoids and unary algebras. This representation result implies that there are continuum many quasivarieties of differential groupoids such that the sets of isomorphism types of finite sublattices of their lattices of relative subvarieties and congruences are not computable. A similar result is obtained for unary algebras and their lattices of relative congruences.
Ключевые слова:
quasivariety, variety, congruence lattice, differential groupoid, unary algebra, undecidable problem, computable set.
Поступила 19 ноября 2019 г., опубликована 4 июня 2020 г.
Образец цитирования:
A. V. Kravchenko, M. V. Schwidefsky, “On the complexity of the lattices of subvarieties and congruences. II. Differential groupoids and unary algebras”, Сиб. электрон. матем. изв., 17 (2020), 753–768
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/semr1248 https://www.mathnet.ru/rus/semr/v17/p753
|
|