|
Эта публикация цитируется в 1 научной статье (всего в 1 статье)
Математическая логика, алгебра и теория чисел
Stability of the class of divisible $S$-acts
A. I. Krasitskaya Far Eastern Federal University, 8, Sukhanova str., Vladivostok, 690090, Russia
Аннотация:
We describe monoids $S$ such that the theory of the class of all divisible $S$-acts is stable, superstable or, for commutative monoid, $\omega$-stable. More precisely, we prove that the theory of the class of all divisible $S$-acts is stable (superstable) iff $S$ is a linearly ordered (well ordered) monoid. We also prove that for a commutative monoid $S$ the theory of the class of all divisible $S$-acts is $\omega$-stable iff $S$ is either an abelian group with at most countable number of subgroups or is finite and has only one proper ideal. Classes of regular, projective and strongly flat $S$-acts were considered in [1, 2]. Using results from [3] we obtain necessary and sufficient conditions for stability, superstability and $\omega$-stability of theories of classes of all divisible $S$-acts.
Ключевые слова:
monoid, divisible $S$-act, stability, superstability, $\omega$-stability.
Поступила 6 апреля 2019 г., опубликована 27 мая 2020 г.
Образец цитирования:
A. I. Krasitskaya, “Stability of the class of divisible $S$-acts”, Сиб. электрон. матем. изв., 17 (2020), 726–731
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/semr1245 https://www.mathnet.ru/rus/semr/v17/p726
|
Статистика просмотров: |
Страница аннотации: | 161 | PDF полного текста: | 67 | Список литературы: | 25 |
|