|
Эта публикация цитируется в 3 научных статьях (всего в 3 статьях)
Дифференциальные уравнения, динамические системы и оптимальное управление
Asymptotic modelling of bonded plates by a soft thin adhesive layer
E. M. Rudoyab a Lavrentyev Institute of Hydrodynamics of SB RAS, 15, Lavrenyeva ave., Novosibirsk, 630090, Russia
b Novosibirsk State University, 1, Pirogov str., Novosibirsk, 630090, Russia
Аннотация:
In the present paper, a composite structure is considered. The structure is made of three homogeneous plates: two linear elastic adherents and a thin adhesive. It is assumed that elastic properties of the adhesive layer depend on its thickness $\varepsilon$ as $\varepsilon$ to the power of $3$. Passage to the limit as $\varepsilon$ goes to zero is justified and a limit model is found in which the influence of the thin adhesive layer is replaced by an interface condition between adherents. As a result, we have analog of the spring type condition in the plate theory. Moreover, a representation formula of the solution in the adhesive layer has been obtained.
Ключевые слова:
bonded structure, Kirchhoff-Love's plate, composite material, spring type interface condition, biharmonic equation.
Поступила 21 января 2020 г., опубликована 17 апреля 2020 г.
Образец цитирования:
E. M. Rudoy, “Asymptotic modelling of bonded plates by a soft thin adhesive layer”, Сиб. электрон. матем. изв., 17 (2020), 615–625
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/semr1235 https://www.mathnet.ru/rus/semr/v17/p615
|
Статистика просмотров: |
Страница аннотации: | 267 | PDF полного текста: | 154 | Список литературы: | 24 |
|