|
Вещественный, комплексный и и функциональный анализ
The Sobolev–Poincaré inequality and the $L_{q,p}$-cohomology of twisted cylinders
V. Gol'dsteina, Ya. A. Kopylovb a Department of Mathematics, Ben Gurion University of the Negev, Beer Sheva, P.O.Box 653, Israel
b Sobolev Institute of Mathematics, 4, Koptyuga ave., Novosibirsk, 630090, Russia
Аннотация:
We establish a vanishing result for the $L_{q,p}$-cohomology (${q\ge p}$) of a twisted cylinder, which is a generalization of a warped cylinder. The result is new even for warped cylinders. We base on the methods for proving the $(p,q)$-Sobolev–Poincaré inequality developed by L. Shartser.
Ключевые слова:
differential form, Sobolev–Poincaré inequality, $L_{q,p}$-cohomology, twisted cylinder, homotopy operator.
Поступила 25 февраля 2020 г., опубликована 16 апреля 2020 г.
Образец цитирования:
V. Gol'dstein, Ya. A. Kopylov, “The Sobolev–Poincaré inequality and the $L_{q,p}$-cohomology of twisted cylinders”, Сиб. электрон. матем. изв., 17 (2020), 566–584
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/semr1231 https://www.mathnet.ru/rus/semr/v17/p566
|
|