|
Эта публикация цитируется в 1 научной статье (всего в 1 статье)
Дифференциальные уравнения, динамические системы и оптимальное управление
A viscoplastic contact problem with friction and adhesion
Abderrezak Kasri Département de Mathématiques, Faculté des sciences, Université 20 Août 1955 - Skikda, B.P.26 Route El-Hadaiek Skikda-Algérie
Аннотация:
The aim of this paper is to present a new result in the study of a contact problem between a viscoplastic body and an obstacle, the so-called foundation. The process is supposed to be quasistatic and the contact is modelled with a version of Coulomb's law of dry friction, normal compliance and an ordinary differential equation which describes the adhesion effect. We derive a variational formulation for the model and under smallness assumption, we establish the existence of a weak solution to the problem. The proof is based on the Rothe time-discretization method, the Banach fixed point theorem and arguments of monotonicity, compactness and lower semicontinuity.
Ключевые слова:
viscoplastic materials, adhesion, quasistatic process, Coulomb's law of dry friction, normal compliance, Rothe method, lower semicontinuity, the Banach fixed point theorem, variational inequalities.
Поступила 31 октября 2019 г., опубликована 16 апреля 2020 г.
Образец цитирования:
Abderrezak Kasri, “A viscoplastic contact problem with friction and adhesion”, Сиб. электрон. матем. изв., 17 (2020), 540–565
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/semr1230 https://www.mathnet.ru/rus/semr/v17/p540
|
|