|
Эта публикация цитируется в 1 научной статье (всего в 1 статье)
Дискретная математика и математическая кибернетика
Классификация графов диаметра $2$
Т. И. Федоряева Sobolev Institute of Mathematics, 4, Koptyuga ave., Novosibirsk, 630090, Russia
Аннотация:
The classification of graphs of diameter $2$ by the number of pairs of diametral vertices contained in the graph is designed. All possible values of the parameters $n$ and $k$ are established for which there exists a $n$-vertex graph of diameter $2$ that has exactly $k$ pairs of diametral vertices. As a corollary, the smallest order of these graphs is found. Such graphs with a large number of vertices are also described and counted. In addition, for any fixed integer $k\geq 1$ inside each distinguished class of $n$-vertex graphs of diameter $2$ containing exactly $k$ pairs of diametral vertices, a class of typical graphs is constructed. For the introduced classes, the almost all property is studied for any $k=k(n)$ with the growth restriction under consideration, covering the case of a fixed integer $k\geq 1$. As a consequence, it is proved that it is impossible to limit the number of pairs of diametral vertices by a given fixed integer $k$ in order to obtain almost all graphs of diameter $2$.
Ключевые слова:
graph, diameter $2$, diametral vertices, typical graphs, almost all graphs.
Поступила 19 января 2020 г., опубликована 6 апреля 2020 г.
Образец цитирования:
Т. И. Федоряева, “Классификация графов диаметра $2$”, Сиб. электрон. матем. изв., 17 (2020), 502–512
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/semr1226 https://www.mathnet.ru/rus/semr/v17/p502
|
Статистика просмотров: |
Страница аннотации: | 428 | PDF полного текста: | 180 | Список литературы: | 32 |
|