|
Вещественный, комплексный и и функциональный анализ
Approximation of discrete functions using special series by modified Meixner polynomials
R. M. Gadzhimirzaev Department of Mathematics and Computer Science, Dagestan Federal Research Center of RAS, 45, M.Gadzhieva str., Makhachkala, 367032, Russia
Аннотация:
This article is devoted to the study of approximative properties of the special series by modified Meixner polynomials $M_{n,N}^\alpha(x)$ $(n=0, 1, \dots)$. For $\alpha>-1$ these polynomials form an orthogonal system on the grid $\Omega_{\delta}=\{0, \delta, 2\delta, \ldots\}$ with respect to the weight function $w(x)=e^{-x}\frac{\Gamma(Nx+\alpha+1)}{\Gamma(Nx+1)}$, where $\delta=\frac{1}{N}$, $N>0$. We obtained upper estimate on $\left[\frac{\theta_n}{2},\infty\right)$ for the Lebesgue function of partial sums of a special series, where $\theta_n=4n+2\alpha+2$.
Ключевые слова:
Meixner polynomials, Fourier series, special series, Lebesgue function.
Поступила 28 апреля 2018 г., опубликована 12 марта 2020 г.
Образец цитирования:
R. M. Gadzhimirzaev, “Approximation of discrete functions using special series by modified Meixner polynomials”, Сиб. электрон. матем. изв., 17 (2020), 395–405
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/semr1219 https://www.mathnet.ru/rus/semr/v17/p395
|
|