|
Вещественный, комплексный и и функциональный анализ
Rectangle as a generalized angle
V. V. Aseev Sobolev Institute of Mathematics, 4, Koptyuga ave., Novosibirsk, 630090, Russia
Аннотация:
In order to extend the notion of quasimöbius mapping to
non-injective case the concept of generalized angle $\Psi = (A_1, A_2; B_1, B_2)$ with
sides $A_1, A_2$ and vertices $B_1, B_2$ (the sets in a Ptolemaic space) has been employed.
The value of a generalizes angle is defined through Ptolimaic characteristic of tetrads and
is not easy to by calculated in general case. Here we present the geometric way of calculation
in the case where the general angle $\Psi$ is a rectangle.
Ключевые слова:
quasimöbius mapping, quasiregular mapping, Ptolemaic space, generalized angle, mapping of bounded angular distortion, set-valued mapping.
Поступила 2 апреля 2019 г., опубликована 26 декабря 2019 г.
Образец цитирования:
V. V. Aseev, “Rectangle as a generalized angle”, Сиб. электрон. матем. изв., 16 (2019), 2013–2018
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/semr1185 https://www.mathnet.ru/rus/semr/v16/p2013
|
Статистика просмотров: |
Страница аннотации: | 213 | PDF полного текста: | 125 | Список литературы: | 22 |
|