|
Эта публикация цитируется в 3 научных статьях (всего в 3 статьях)
Теория вероятностей и математическая статистика
A statistical test for the Zipf's law by deviations from the Heaps' law
M. G. Chebuninab, A. P. Kovalevskiicb a Sobolev Institute of Mathematics,
4, Koptyuga ave.,
Novosibirsk, 630090, Russia
b Novosibirsk State University, 1, Pirogova str., Novosibirsk, 630090, Russia
c Novosibirsk State Technical University, 20, K. Marksa ave., 630073, Novosibirsk, Russia
Аннотация:
We explore a probabilistic model of an artistic text: words of the text are chosen independently of each other
in accordance with a discrete probability distribution on an infinite dictionary. The words are enumerated 1, 2, $\ldots$,
and the probability of appearing the $i$'th word is asymptotically a power function.
Bahadur proved that in this case the number of different words as a function of the length of the text, again,
asymptotically behaves like a power function.
On the other hand, in the applied statistics community there are statements known as the Zipf’s and Heaps’ laws that are supported by empirical observations.
We highlight the links between Bahadur results and Zipf's/Heaps' laws, and
introduce and analyse a corresponding statistical test.
Ключевые слова:
Zipf's law, Heaps' law, weak convergence.
Поступила 24 сентября 2019 г., опубликована 4 декабря 2019 г.
Образец цитирования:
M. G. Chebunin, A. P. Kovalevskii, “A statistical test for the Zipf's law by deviations from the Heaps' law”, Сиб. электрон. матем. изв., 16 (2019), 1822–1832
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/semr1170 https://www.mathnet.ru/rus/semr/v16/p1822
|
Статистика просмотров: |
Страница аннотации: | 291 | PDF полного текста: | 155 | Список литературы: | 33 |
|