|
Дифференциальные уравнения, динамические системы и оптимальное управление
Факторизация оператора Грина в задаче Дирихле для $(-1)^m(d/d t)^{2m}$
С. Г. Казанцев Sobolev Institute of Mathematics, 4, Koptyuga ave., Novosibirsk, 630090, Russia
Аннотация:
In this article we propose
a method for solving the
Dirichlet boundary value
problem
$(-1)^{m}{u}^{(2m)}=f$,
${u}^{(k)}(\pm 1)= 0$,
$k=0, \dots ,m-1$,
which is based on the factorization of the Green's operator,
$\mathbf{G}_{2m}=(-1)^m\mathbf{J}^m \, \overset{\infty}{\underset{m}{\mathbf{Proj}}}\,
\mathbf{J}^m:L_2({\mathbb I}) \to
H^{m}_{0}({\mathbb I})
\cap H^{2m}({\mathbb I}), {\mathbb I}=[-1,1]$.
Here $\mathbf{J}^m$ is a Volterra operator of $m$-fold integration
аnd $\overset{\infty}{\underset{m}{\mathbf{Proj}}}$ —
operator of orthogonal projection
in $L_2({\mathbb I})$.
The polynomials
$\widetilde{\mathbb P}^{[2m]}_{2m+N}
=\mathbf{J}^{m}\overset{\infty}{\underset{m}
{\mathbf{Proj}}}\, {\mathbb P}^{[m]}_{m+N}$
form the basis of the Sobolev space
$H^{m}_{0}({\mathbb I}) \cap H^{2m}({\mathbb I})$,
where
${\mathbb P}^{[m]}_{m+N}(t)=
\mathbf{J}^{m}P_N(t)
=
\dfrac{(t-1)^m}{m!C^m_{m+N}}
P^{(m,-m)}_{N}(t)$,
$P_N$ are Legendre polynomials
and ${P}^{(m,-m)}_{N}$
— non–classical Jacobi polynomials.
The study of polynomials ${\mathbb P}^ {[m]}_{m+N}$ occupies the most part of this work including the problem of expanding ${\mathbb P}^{[m]}_{m+N}$ in Legendre polynomials. The formula for calculating the connection coefficients is obtained.
Ключевые слова:
ordinary differential equation, Dirichlet boundary value problem, Green's operator, Sobolev space, Fourier transform, Riemann–Liouville fractional integral, Legendre, Jacobi and Bessel polynomials, spherical Bessel functions, Gauss hypergeometric functions.
Поступила 18 марта 2019 г., опубликована 21 ноября 2019 г.
Образец цитирования:
С. Г. Казанцев, “Факторизация оператора Грина в задаче Дирихле для $(-1)^m(d/d t)^{2m}$”, Сиб. электрон. матем. изв., 16 (2019), 1662–1688
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/semr1159 https://www.mathnet.ru/rus/semr/v16/p1662
|
|