|
Сибирские электронные математические известия, 2008, том 5, страницы 283–292
(Mi semr107)
|
|
|
|
Эта публикация цитируется в 2 научных статьях (всего в 2 статьях)
Статьи
Perfect colorings of radius $r>1$ of the infinite rectangular grid
S. A. Puzyninaab a Sobolev Institute of Mathematics, Novosibirsk, Russia
b Novosibirsk State University
Аннотация:
A coloring of vertices of a graph $G$ with $n$ colors is called perfect of radius $r$ if the number of vertices of each color in a ball of radius $r$ depends only on the color of the center of this ball. Perfect colorings of radius $1$ have been studied before under different names including equitable partitions. The notion of perfect coloring is a generalization of the notion of a perfect code, in fact, a perfect code is a special case of a perfect coloring. We consider perfect colorings of the graph of the infinite rectangular grid.
Perfect colorings of the infinite rectangular grid can be interpreted as two-dimensional words over a finite alphabet of colors. We prove that every perfect coloring of radius $r>1$ of this graph is periodic.
Ключевые слова:
perfect coloring, equitable partition, perfect code, graph of the infinite rectangular grid.
Поступила 27 сентября 2007 г., опубликована 25 июня 2008 г.
Образец цитирования:
S. A. Puzynina, “Perfect colorings of radius $r>1$ of the infinite rectangular grid”, Сиб. электрон. матем. изв., 5 (2008), 283–292
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/semr107 https://www.mathnet.ru/rus/semr/v5/p283
|
Статистика просмотров: |
Страница аннотации: | 254 | PDF полного текста: | 70 | Список литературы: | 51 |
|