|
Геометрия и топология
Remarks on Ostrovsky's theorem
Alexander V. Osipovabc a Krasovskii Institute of Mathematics and Mechanics,
16, S.Kovalevskay str.,
Yekaterinburg, 620990, Russia
b Ural State University of Economics
c Ural Federal University
Аннотация:
In this paper we prove that the condition 'one-to-one' of the continuous open-resolvable mapping is necessary in the Ostrovsky theorem (Theorem 1 in [4]). Also we get that the Ostrovsky problem ([6], Problem 2) (Is every continuous open-$LC_n$ function between Polish spaces piecewise open for $n=2,3,...$ ?) has a negative solution for each $n>1$.
Ключевые слова:
open-resolvable function, open function, resolvable set, open-$LC_n$ function, piecewise open function, scatteredly open function.
Поступила 4 октября 2018 г., опубликована 29 марта 2019 г.
Образец цитирования:
Alexander V. Osipov, “Remarks on Ostrovsky's theorem”, Сиб. электрон. матем. изв., 16 (2019), 435–438
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/semr1067 https://www.mathnet.ru/rus/semr/v16/p435
|
Статистика просмотров: |
Страница аннотации: | 267 | PDF полного текста: | 169 | Список литературы: | 29 |
|