|
Эта публикация цитируется в 1 научной статье (всего в 1 статье)
Математическая логика, алгебра и теория чисел
On modular and cancellable elements of the lattice of semigroup varieties
D. V. Skokov, B. M. Vernikov Ural Federal University, Institute of Natural Sciences and Mathematics,
51, Lenina str.,
Ekaterinburg, 620000, Russia
Аннотация:
We continue a study of modular and cancellable elements in the lattice SEM of all semigroup varieties. In 2007, the second author completely determined all commutative semigroup varieties that are modular elements in SEM. In 2018 the authors jointly with S.V.Gusev proved that, within the class of commutative varieties, the properties to be modular and cancellable elements in SEM are equivalent. The objective of this article is to verify that, within some slightly wider class of semigroup varieties, this equivalence is not the case. To achieve this goal, we completely classify semigroup varieties satisfying a permutational identity of length 3 that are modular elements in SEM. Further, we specify a variety with these properties that is not a cancellable element in SEM.
Ключевые слова:
semigroup, variety, lattice of varieties, permutational identity, modular element of a lattice, cancellable element of a lattice.
Поступила 26 марта 2018 г., опубликована 6 февраля 2019 г.
Образец цитирования:
D. V. Skokov, B. M. Vernikov, “On modular and cancellable elements of the lattice of semigroup varieties”, Сиб. электрон. матем. изв., 16 (2019), 175–186
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/semr1048 https://www.mathnet.ru/rus/semr/v16/p175
|
Статистика просмотров: |
Страница аннотации: | 321 | PDF полного текста: | 197 | Список литературы: | 43 |
|