Сибирские электронные математические известия
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Импакт-фактор

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Сиб. электрон. матем. изв.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Сибирские электронные математические известия, 2018, том 15, страницы 1865–1877
DOI: https://doi.org/10.33048/semi.2018.15.151
(Mi semr1042)
 

Эта публикация цитируется в 9 научных статьях (всего в 9 статьях)

Вещественный, комплексный и и функциональный анализ

О задаче Коши для матричных факторизаций уравнения Гельмгольца в неограниченной области ${\mathbb R}^{2}$

Д. А. Жураев

Karshi State University, Karshi city, Kuchabog-17, 180100, Republic of Uzbekistan, Kashkadarya region
Список литературы:
Аннотация: In the paper it is considered the problem of regularization of the Cauchy problem for matrix factorisations of the Helmholtz equation in an unbounded planar domain. Using the Carleman matrix found an explicitly regularized solution of the Cauchy problem for matrix factorizations of the Helmholtz equation in two-dimensional unbounded domain.
Ключевые слова: the Cauchy problem, regularization, factorization, regular solution, fundamental solution.
Поступила 17 января 2018 г., опубликована 31 декабря 2018 г.
Реферативные базы данных:
Тип публикации: Статья
УДК: 517.946
MSC: 35J46
Образец цитирования: Д. А. Жураев, “О задаче Коши для матричных факторизаций уравнения Гельмгольца в неограниченной области ${\mathbb R}^{2}$”, Сиб. электрон. матем. изв., 15 (2018), 1865–1877
Цитирование в формате AMSBIB
\RBibitem{Jur18}
\by Д.~А.~Жураев
\paper О задаче Коши для матричных факторизаций уравнения Гельмгольца в неограниченной области ${\mathbb R}^{2}$
\jour Сиб. электрон. матем. изв.
\yr 2018
\vol 15
\pages 1865--1877
\mathnet{http://mi.mathnet.ru/semr1042}
\crossref{https://doi.org/10.33048/semi.2018.15.151}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/semr1042
  • https://www.mathnet.ru/rus/semr/v15/p1865
  • Эта публикация цитируется в следующих 9 статьяx:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Статистика просмотров:
    Страница аннотации:427
    PDF полного текста:99
    Список литературы:35
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024