|
Эта публикация цитируется в 3 научных статьях (всего в 3 статьях)
Вещественный, комплексный и и функциональный анализ
Funk–Minkowski transform and spherical convolution of Hilbert type in reconstructing functions on the sphere
S. G. Kazantsev Sobolev Institute of Mathematics,
4, pr. Koptyuga,
Novosibirsk, 630090, Russia
Аннотация:
The Funk–Minkowski transform ${\mathcal F}$ associates a function $f$ on the sphere ${\mathbb S}^2$ with its mean values (integrals) along all great circles of the sphere. The presented analytical inversion formula reconstruct the unknown function $f$ completely if two Funk–Minkowski transforms, ${\mathcal F}f$ and ${\mathcal F} \nabla f$, are known. Another result of this article is related to the problem of Helmholtz–Hodge decomposition for tangent vector field on the sphere ${\mathbb S}^2$. We proposed solution for this problem which is used the Funk–Minkowski transform ${\mathcal F}$ and Hilbert type spherical convolution ${\mathcal S}$.
Ключевые слова:
Funk–Minkowski transform, Funk–-Radon transform, spherical convolution of Hilbert type, Fourier multiplier operator, inverse operator, surface gradient, scalar and vector spherical harmonics, tangential spherical vector field, Helmholtz–Hodge decomposition.
Поступила 4 июля 2018 г., опубликована 14 декабря 2018 г.
Образец цитирования:
S. G. Kazantsev, “Funk–Minkowski transform and spherical convolution of Hilbert type in reconstructing functions on the sphere”, Сиб. электрон. матем. изв., 15 (2018), 1630–1650
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/semr1024 https://www.mathnet.ru/rus/semr/v15/p1630
|
|