Сибирские электронные математические известия
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Импакт-фактор

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Сиб. электрон. матем. изв.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Сибирские электронные математические известия, 2018, том 15, страницы 1332–1343
DOI: https://doi.org/10.17377/semi.2018.15.109
(Mi semr1000)
 

Эта публикация цитируется в 1 научной статье (всего в 1 статье)

Математическая логика, алгебра и теория чисел

О ранге коммутанта конечной $p$-группы, порожденной элементами порядка $p$ при $p > 2$

Б. М. Веретенников

Ural Federal University, 19 Mira street, 620002 Ekaterinburg, Russia
Список литературы:
Аннотация: All groups in the abstract are finite. We define rank $d(G)$ of a $p$-group $G$ as the minimal number of generators of $G$, $d(G) = 0$ if $|G|=1$. Let $p$ be an odd prime number, $n,k$ be integers, $n \geq 1$, $k \geq 1$. By $M(n,k,p)$ we denote the number of sequences $i_1,\dots,i_k$ in which $1 \leq i_1 \leq \dots \leq i_k \leq n$, all members $i_j$ are integers and in which any integer from $[1,n]$ may be present at most $(p-1)$ times. In addition we define $M(n,k,p)=0$ if $n \leq 0$ or $k < 0$ and $M(n,0,p)=1$ if $n \geq 1$. By $C(n,k,p)$ we denote $\sum\limits_{1 \leq i_2 \leq n-1} ( M(n-i_2+1,k-2,p) -2 M(n-i_2, k-p-1, p) +M(n-i_2-1, k-2p-1,p) ) (n-i_2)$. By $D(n,p)$ we denote the following sum: $\sum\limits_{k=2}^{n(p-1)} C(n,k,p)$; $D(1,p)=0$. We prove that for any $p$-group $G$ generated by $n$ elements of order $p > 2$, $d(G') \leq D(n,p)$ and that the upper bound is attainable. As an intermediate result we prove that the class of nilpotency of such group $G$ with elementary abelian commutator subgroup does not exceed $n(p-1)$ and this upper bound is also attainable.
Ключевые слова: finite $p$-group generated by elements of order $p$, minimal number of generators of commutator subgroup, definition of group by means of generators and defining relations.
Поступила 4 сентября 2018 г., опубликована 31 октября 2018 г.
Реферативные базы данных:
Тип публикации: Статья
УДК: 512.54
MSC: 20B05
Образец цитирования: Б. М. Веретенников, “О ранге коммутанта конечной $p$-группы, порожденной элементами порядка $p$ при $p > 2$”, Сиб. электрон. матем. изв., 15 (2018), 1332–1343
Цитирование в формате AMSBIB
\RBibitem{Ver18}
\by Б.~М.~Веретенников
\paper О ранге коммутанта конечной $p$-группы, порожденной элементами порядка $p$ при $p > 2$
\jour Сиб. электрон. матем. изв.
\yr 2018
\vol 15
\pages 1332--1343
\mathnet{http://mi.mathnet.ru/semr1000}
\crossref{https://doi.org/10.17377/semi.2018.15.109}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/semr1000
  • https://www.mathnet.ru/rus/semr/v15/p1332
  • Эта публикация цитируется в следующих 1 статьяx:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Статистика просмотров:
    Страница аннотации:177
    PDF полного текста:32
    Список литературы:24
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024