Успехи математических наук
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Импакт-фактор
Правила для авторов
Загрузить рукопись
Историческая справка

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



УМН:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Успехи математических наук, 2024, том 79, выпуск 6(480), страницы 83–116
DOI: https://doi.org/10.4213/rm10207
(Mi rm10207)
 

Local SGD for near-quadratic problems: Improving convergence under unconstrained noise conditions

A. E. Sadchikova, S. A. Chezhegovab, A. N. Beznosikovbcd , A. V. Gasnikovabd

a Moscow Institute of Physics and Technology (National Research University), Moscow, Russia
b Ivannikov Institute for System Programming of the Russian Academy of Sciences, Moscow, Russia
c Sber AI Lab, Moscow, Russia
d Innopolis University, Innopolis, Russia
Список литературы:
Аннотация: Distributed optimization plays an important role in modern large-scale machine learning and data processing systems by optimizing the utilization of computational resources. One of the classical and popular approaches is Local Stochastic Gradient Descent (Local SGD), characterized by multiple local updates before averaging, which is particularly useful in distributed environments to reduce communication bottlenecks and improve scalability. A typical feature of this method is the dependence on the frequency of communications. But in the case of a quadratic target function with homogeneous data distribution over all devices, the influence of the frequency of communications vanishes. As a natural consequence, subsequent studies include the assumption of a Lipschitz Hessian, as this indicates the similarity of the optimized function to a quadratic one to a certain extent. However, in order to extend the completeness of Local SGD theory and unlock its potential, in this paper we abandon the Lipschitz Hessian assumption by introducing a new concept of approximate quadraticity. This assumption gives a new perspective on problems that have near quadratic properties. In addition, existing theoretical analyses of Local SGD often assume a bounded variance. We, in turn, consider the unbounded noise condition, which allows us to broaden the class of problems under study.
Bibliography: 36 titles.
Ключевые слова: distributed optimization, quadraticity, strong growth condition.
Финансовая поддержка
The work of A. V. Gasnikov was supported by a grant for research centers in the field of artificial intelligence, provided by the Analytical Center for the Government of the Russian Federation in accordance with the subsidy agreement (agreement identifier 000000D730321P5Q0002) and the agreement with the Ivannikov Institute for System Programming of the Russian Academy of Sciences dated November 2, 2021 no. 70-2021-00142.
Поступила в редакцию: 16.08.2024
Тип публикации: Статья
УДК: 519.853.62
Язык публикации: английский
Образец цитирования: A. E. Sadchikov, S. A. Chezhegov, A. N. Beznosikov, A. V. Gasnikov, “Local SGD for near-quadratic problems: Improving convergence under unconstrained noise conditions”, УМН, 79:6(480) (2024), 83–116
Цитирование в формате AMSBIB
\RBibitem{SadCheBez24}
\by A.~E.~Sadchikov, S.~A.~Chezhegov, A.~N.~Beznosikov, A.~V.~Gasnikov
\paper Local SGD for near-quadratic problems:
Improving convergence under unconstrained noise conditions
\jour УМН
\yr 2024
\vol 79
\issue 6(480)
\pages 83--116
\mathnet{http://mi.mathnet.ru/rm10207}
\crossref{https://doi.org/10.4213/rm10207}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/rm10207
  • https://doi.org/10.4213/rm10207
  • https://www.mathnet.ru/rus/rm/v79/i6/p83
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024