|
Эта публикация цитируется в 1 научной статье (всего в 1 статье)
Proceedings of GDIS 2008, Belgrade
From Jacobi problem of separation of variables to theory of quasipotential Newton equations
S. Rauch-Wojciechowski Department of Mathematics, Linkoping University,
581 83 Linkoping, Sweden
Аннотация:
Our solution to the Jacobi problem of finding separation variables
for natural Hamiltonian systems $H=\tfrac12 p^2+V(q)$ is explained in the first part of
this review. It has a form of an effective criterion that for any
given potential $V(q)$ tells whether there exist suitable separation
coordinates $x(q)$ and how to find these coordinates, so that the
Hamilton–Jacobi equation of the transformed Hamiltonian is separable.
The main reason for existence of such criterion is the fact that for
separable potentials $V(q)$ all integrals of motion depend quadratically
on momenta and that all orthogonal separation coordinates stem from
the generalized elliptic coordinates. This criterion is directly
applicable to the problem of separating multidimensional stationary
Schrödinger equation of quantum mechanics.
Second part of this work provides a summary of theory of quasipotential,
cofactor pair Newton equations $\ddot{q}=M(q)$ admitting $n$ quadratic integrals of motion.
This theory is a natural generalization of theory of separable potential
systems $\ddot{q}=-\nabla V(q)$. The cofactor pair Newton equations admit a
Hamilton–Poisson structure in an extended $2n+1$ dimensional phase space
and are integrable by embedding into a Liouville integrable system.
Two characterizations of these systems are given: one through a Poisson
pencil and another one through a set of Fundamental Equations. For a
generic cofactor pair system separation variables have been found and
such system have been shown to be equivalent to a Stäckel separable
Hamiltonian system. The theory is illustrated by examples of driven
and triangular Newton equations.
Ключевые слова:
separability, Hamilton–Jacobi equation, Poisson structures, integrability, Hamiltonian system, Newton equation.
Поступила в редакцию: 09.10.2008 Принята в печать: 19.01.2009
Образец цитирования:
S. Rauch-Wojciechowski, “From Jacobi problem of separation of variables to theory of quasipotential Newton equations”, Regul. Chaotic Dyn., 14:4-5 (2009), 550–570
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/rcd999 https://www.mathnet.ru/rus/rcd/v14/i4/p550
|
Статистика просмотров: |
Страница аннотации: | 173 |
|