Аннотация:
The Poincaré model for dynamics of a collisionless gas in a rectangular parallelepiped with mirror walls is considered. The question on smoothing of the density and the temperature of this gas and conditions for the monotone growth of the coarse-grained entropy are discussed. All these effects provide a new insight of the classical paradox of mixing of gases.
Образец цитирования:
V. V. Kozlov, “Kinetics of collisionless gas: Equalization of temperature, growth of the coarse-grained entropy and the Gibbs paradox”, Regul. Chaotic Dyn., 14:4-5 (2009), 535–540
\RBibitem{Koz09}
\by V. V. Kozlov
\paper Kinetics of collisionless gas: Equalization of temperature, growth of the coarse-grained entropy and the Gibbs paradox
\jour Regul. Chaotic Dyn.
\yr 2009
\vol 14
\issue 4-5
\pages 535--540
\mathnet{http://mi.mathnet.ru/rcd997}
\crossref{https://doi.org/10.1134/S1560354709040091}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2551875}
\zmath{https://zbmath.org/?q=an:1229.82092}
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/rcd997
https://www.mathnet.ru/rus/rcd/v14/i4/p535
Эта публикация цитируется в следующих 6 статьяx:
В. В. Козлов, “Флуктуации ансамблей Гиббса”, Докл. РАН, 458:1 (2014), 22–26; V. V. Kozlov, “Fluctuations of Gibbs ensembles”, Dokl. Math., 90:2 (2014), 622–625
В. П. Маслов, Т. В. Маслова, “Неограниченная теория вероятностей и ее приложения”, Теория вероятн. и ее примен., 57:3 (2012), 471–498; V. P. Maslov, T. V. Maslova, “Unbounded probability theory and its applications”, Theory Probab. Appl., 57:3 (2013), 444–467
V. P. Maslov, T. V. Maslova, “Probability theory for random variables with unboundedly growing values and its applications”, Russ. J. Math. Phys., 19:3 (2012), 324
V. P. Maslov, “Solution of the gibbs paradox using the notion of entropy as a function of the fractal dimension”, Russ. J. Math. Phys., 17:3 (2010), 288
V. P. Maslov, “On an ideal gas related to the law of corresponding states”, Russ. J. Math. Phys., 17:2 (2010), 240
V. P. Maslov, “New global distributions in number theory and their applications”, J. Fixed Point Theory Appl., 8:1 (2010), 81