|
Эта публикация цитируется в 2 научных статьях (всего в 2 статьях)
Бифуркация удвоения периода в динамике твердого тела
А. В. Борисовa, Н. Н. Симаковb a 119899, Россия, Москва Воробьевы горы, Московский государственный университет, механико-математический факультет, кафедра теоретической механики
b Удмуртский государственный университет, физический факультет, Ижевск, Россия
Аннотация:
В работе рассмотрен сценарий Фейгенбаума перехода к стохастичности на примере классической задачи о движении твердого тела вокруг неподвижной точки в поле тяжести. Численные результаты получены с использованием канонических переменных Андуайе-Депри. Вычислены универсальные константы, описывающие скейлинг самоповторения «дерева удвоений», одинаковые для всех динамических систем, сводящихся к исследованию отображения плоскости на себя, сохраняющего площадь. Показано, что стохастичность в уравнениях Эйлера-Пуассона при определенных ограничениях на параметры системы может развиваться по сценарию Фейгенбаума.
Поступила в редакцию: 10.12.1996
Образец цитирования:
А. В. Борисов, Н. Н. Симаков, “Бифуркация удвоения периода в динамике твердого тела”, Regul. Chaotic Dyn., 2:1 (1997), 64–74
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/rcd971 https://www.mathnet.ru/rus/rcd/v2/i1/p64
|
Статистика просмотров: |
Страница аннотации: | 121 |
|