|
Эта публикация цитируется в 1 научной статье (всего в 1 статье)
Finitely and Infinitely Sheeted Solutions in Some Classes of Nonlinear ODEs
V. Marinakisa, A. Bountisa, S. Abendab a Department of Mathematics and Center for Research
and Application of Nonlinear Systems,
University of Patras,
26500 Patras, Hellas
b Dipartimento di Matematica e CIRAM,
Universita' di Bologna,
Pizza San Donato 5,
140127 Bologna BO, Italy
Аннотация:
In this paper we examine an integrable and a non-integrable class of the first order nonlinear ordinary differential equations of the type $\dot{x}= x - x^n + \varepsilon g(t), x \in \mathbb{C}, n \in \mathbb{N}$. We exploit, using the analysis proposed in [1], the asymptotic formulas which give the location of the singularities in the complex plane and show that there is an essential difference regarding the formation and the density of the singularities between the cases $g(t)=1$ and $g(t)=t$. Our analytical results are combined with a numerical study of the solutions in the complex time plane.
Поступила в редакцию: 28.07.1998
Образец цитирования:
V. Marinakis, A. Bountis, S. Abenda, “Finitely and Infinitely Sheeted Solutions in Some Classes of Nonlinear ODEs”, Regul. Chaotic Dyn., 3:4 (1998), 63–73
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/rcd962 https://www.mathnet.ru/rus/rcd/v3/i4/p63
|
Статистика просмотров: |
Страница аннотации: | 81 |
|