|
Эта публикация цитируется в 2 научных статьях (всего в 2 статьях)
Heteroclinic Geodesics for a Class of Manifolds With Symmetry
S. V. Bolotina, P. H. Rabinowitzb a Department of Mathematics and Mechanics,
Moscow State University,
Vorob'evy Gory, Moscow 119899, Russia
b Department of Mathematics,
University of Wisconsin,
Madison, Wisconsin, USA
Аннотация:
The results of Morse and Hedlund about minimal heteroclinic geodesics on surfaces are generalized to a class of Finsler manifolds possessing a symmetry. The existence of minimal heteroclinic geodesics is established. Under an assumption that the set of such geodesics has certain compactness properties, multibump chaotic geodesics are constructed.
Поступила в редакцию: 03.09.1998
Образец цитирования:
S. V. Bolotin, P. H. Rabinowitz, “Heteroclinic Geodesics for a Class of Manifolds With Symmetry”, Regul. Chaotic Dyn., 3:4 (1998), 49–62
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/rcd961 https://www.mathnet.ru/rus/rcd/v3/i4/p49
|
Статистика просмотров: |
Страница аннотации: | 101 |
|