Regular and Chaotic Dynamics
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Импакт-фактор

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Regul. Chaotic Dyn.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Regular and Chaotic Dynamics, 1998, том 3, выпуск 3, страницы 132–160
DOI: https://doi.org/10.1070/RD1998v003n03ABEH000086
(Mi rcd954)
 

Эта публикация цитируется в 16 научных статьях (всего в 16 статьях)

On the 70th birthday of J.Moser

A Lie algebraic generalization of the Mumford system, its symmetries and its multi-Hamiltonian structure

M. Pedronia, P. Vanhaeckebc

a Università di Genova, Dipartitnento di Matematica, Via, Dodecanese 35, 1-16146 Genova, Italy
b Université des Sciences et Technologies de Lille, U.F.R. de Mathématiques, 59655 Villeneuve d'Ascq Cedex, France
c University of California, 1015 Department of Mathematics, Davis, CA 95616-8633, USA
Аннотация: In this paper we generalize the Mumford system which describes for any fixed $g$ all linear flows on all hyperelliptic Jacobians of dimension $g$. The phase space of the Mumford system consists of triples of polynomials, subject to certain degree constraints, and is naturally seen as an affine subspace of the loop algebra of $\mathfrak{sl}(2)$. In our generalizations to an arbitrary simple Lie algebra $\mathfrak{g}$ the phase space consists of $\dim \mathfrak{g}$ polynomials, again subject to certain degree constraints. This phase space and its multi-Hamiltonian structure is obtained by a Poisson reduction along a subvariety $N$ of the loop algebra $\mathfrak{g} ((\lambda - 1))$ of $\mathfrak{g}$. Since $N$ is not a Poisson subvariety for the whole multi-Hamiltonian structure we prove an algebraic. Poisson reduction theorem for reduction along arbitrary subvarieties of an affine Poisson variety; this theorem is similar in spirit to the Marsden–Ratiu reduction theorem. We also give a different perspective on the multi-Hamiltonian structure of the Mumford system (and its generalizations) by introducing a master symmetry; this master symmetry can be described on the loop algebra $\mathfrak{g} ((\lambda -1))$ as the derivative in the direction of $\lambda$ and is shown to survive the Poisson reduction. When acting (as a Lie derivative) on one of the Poisson structures of the system it produces a next one, similarly when acting on one of the Hamiltonians (in involution) or their (commuting) vector fields it produces a next one. In this way we arrive at several multi-Hamiltonian hierarchies, built up by a master symmetry.
Поступила в редакцию: 21.07.1998
Реферативные базы данных:
Тип публикации: Статья
MSC: 34A05, 58F05, 58F07
Язык публикации: английский
Образец цитирования: M. Pedroni, P. Vanhaecke, “A Lie algebraic generalization of the Mumford system, its symmetries and its multi-Hamiltonian structure”, Regul. Chaotic Dyn., 3:3 (1998), 132–160
Цитирование в формате AMSBIB
\RBibitem{PedVan98}
\by M. Pedroni, P.~Vanhaecke
\paper A Lie algebraic generalization of the Mumford system, its symmetries and its multi-Hamiltonian structure
\jour Regul. Chaotic Dyn.
\yr 1998
\vol 3
\issue 3
\pages 132--160
\mathnet{http://mi.mathnet.ru/rcd954}
\crossref{https://doi.org/10.1070/RD1998v003n03ABEH000086}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1704975}
\zmath{https://zbmath.org/?q=an:0964.37033}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/rcd954
  • https://www.mathnet.ru/rus/rcd/v3/i3/p132
  • Эта публикация цитируется в следующих 16 статьяx:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024