|
Эта публикация цитируется в 2 научных статьях (всего в 2 статьях)
On the 70th birthday of J.Moser
The role of complex-time singularities in chaotic dynamics
A. Gorielyab, M. Taborab a University of Arizona,
Department of Mathematics
b Program in Applied Mathematics,
Building 89 , Tucson, AZ85721, USA
Аннотация:
The analysis of complex-time singularities has proved to be the most useful tool for the analysis of integrable systems. Here, we demonstrate its use in the analysis of chaotic dynamics. First, we show that the Melnikov vector, which gives an estimate of the splitting distance between invariant manifolds, can be given explicitly in terms of local solutions around the complex-time singularities. Second, in the case of exponentially small splitting of invariant manifolds, we obtain sufficient conditions on the vector field for the Melnikov theory to be applicable. These conditions can be obtained algorithmically from the singularity analysis.
Поступила в редакцию: 10.08.1998
Образец цитирования:
A. Goriely, M. Tabor, “The role of complex-time singularities in chaotic dynamics”, Regul. Chaotic Dyn., 3:3 (1998), 32–44
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/rcd946 https://www.mathnet.ru/rus/rcd/v3/i3/p32
|
Статистика просмотров: |
Страница аннотации: | 83 |
|