|
Эта публикация цитируется в 48 научных статьях (всего в 49 статьях)
Geodesical equivalence and the Liouville integration of the geodesic flows
V. S. Matveeva, P. Ĭ. Topalovb a Max-Planck-Institute f. Mathematik,
Gottfried-Claren-Strasse 26, 53225 Bonn
b Institute of Mathematics and Informatics, BAS,
Acad. G.Bonchev Str., bl. 8,
Sofia, 1113,
Bulgaria
Аннотация:
We suggest a simple approach for obtaining integrals of Hamiltonian systems if there is known a trajectorian map of two Hamiltonian systems. An explicite formila is given. As an example, it is proved that if on a manifold are given two Riemannian metrics which are geodesically equivalent then there is a big family of integrals. Our theorem is a generalization of the well-known Painleve–Liouville theorems.
Поступила в редакцию: 02.02.1998
Образец цитирования:
V. S. Matveev, P. Ĭ. Topalov, “Geodesical equivalence and the Liouville integration of the geodesic flows”, Regul. Chaotic Dyn., 3:2 (1998), 30–45
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/rcd937 https://www.mathnet.ru/rus/rcd/v3/i2/p30
|
Статистика просмотров: |
Страница аннотации: | 96 |
|