|
Эта публикация цитируется в 6 научных статьях (всего в 6 статьях)
On separatrix splitting of some quadratic area-preserving maps of the plane
V. L. Chernov Faculty of Physics,
Department of Mathematical Physics,
Saint-Petersburg State University,
Ulianovskaya str. 1/1, Petrodvorets,
198904, Saint-Petersburg, Russia
Аннотация:
Hamiltonian dynamical systems are considered in this article. They come from iterations of area-preserving quadratic maps of the plain. Stable and unstable invariant curves of the map $QM(u,v)=(v+u+u^2,v+u^2)$ passing across the origin are presented in the form of the Laplace's integrals from the same function but along the different contours. Also an asymptotic of their difference calculated splitting of the map $HM(X,Y)=(Y+X+\varepsilon X(1-X),Y+\varepsilon X(1-X))$. An asimptotic formula is given for a homoclinic invariant as $\varepsilon \to 0$, but it did not prove rigorously.
Поступила в редакцию: 15.01.1998
Образец цитирования:
V. L. Chernov, “On separatrix splitting of some quadratic area-preserving maps of the plane”, Regul. Chaotic Dyn., 3:1 (1998), 49–65
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/rcd928 https://www.mathnet.ru/rus/rcd/v3/i1/p49
|
Статистика просмотров: |
Страница аннотации: | 70 |
|