Regular and Chaotic Dynamics
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Импакт-фактор

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Regul. Chaotic Dyn.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Regular and Chaotic Dynamics, 2013, том 18, выпуск 1-2, страницы 1–20
DOI: https://doi.org/10.1134/S1560354713010012
(Mi rcd92)
 

Эта публикация цитируется в 4 научных статьях (всего в 4 статьях)

On the Dynamic Markov–Dubins Problem: from Path Planning in Robotic and Biolocomotion to Computational Anatomy

Alex Lúcio Castroa, Jair Koillerb

a Departamento de Matemática, Pontificia Universidade Católica — PUC/Rio, Rua Marquês de São Vicente 225, Rio de Janeiro, RJ, 22453-900, Brazil
b Escola de Matemática Aplicada, Fundação Getulio Vargas, Praia de Botafogo 190, Rio de Janeiro, RJ, 22250-040, Brazil
Список литературы:
Аннотация: Andrei Andreyevich Markov proposed in 1889 the problem (solved by Dubins in 1957) of finding the twice continuously differentiable (arc length parameterized) curve with bounded curvature, of minimum length, connecting two unit vectors at two arbitrary points in the plane. In this note we consider the following variant, which we call the dynamic Markov–Dubins problem (dM-D): to find the time-optimal $C^2$ trajectory connecting two velocity vectors having possibly different norms. The control is given by a force whose norm is bounded. The acceleration may have a tangential component, and corners are allowed, provided the velocity vanishes there. We show that for almost all the two vectors boundary value conditions, the optimization problem has a smooth solution. We suggest some research directions for the dM-D problem on Riemannian manifolds, in particular we would like to know what happens if the underlying geodesic problem is completely integrable. Path planning in robotics and aviation should be the usual applications, and we suggest a pursuit problem in biolocomotion. Finally, we suggest a somewhat unexpected application to "dynamic imaging science". Short time processes (in medicine and biology, in environment sciences, geophysics, even social sciences?) can be thought as tangent vectors. The time needed to connect two processes via a dynamic Markov–Dubins problem provides a notion of distance. Statistical methods could then be employed for classification purposes using a training set.
Ключевые слова: geometric mechanics, calculus of variations, Markov–Dubins problem.
Финансовая поддержка Номер гранта
Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro
Coordenaҫão de Aperfeiҫoamento de Pessoal de Nível Superior
National Council for Scientific and Technological Development (CNPq)
MITACS
This research was supported by FAPERJ and the Brazilian Science without Frontiers program (CAPES and CNPq), and it is associated to the Brazilian branch of the Geometry, Mechanics and Control network. The research was concluded during the July 2012 Focus Program on Geometry, Mechanics and Dynamics, the Legacy of Jerry Marsden at Fields Institute, Toronto, also with the generous support of MITACS.
Поступила в редакцию: 08.01.2013
Принята в печать: 07.03.2013
Реферативные базы данных:
Тип публикации: Статья
Язык публикации: английский
Образец цитирования: Alex Lúcio Castro, Jair Koiller, “On the Dynamic Markov–Dubins Problem: from Path Planning in Robotic and Biolocomotion to Computational Anatomy”, Regul. Chaotic Dyn., 18:1-2 (2013), 1–20
Цитирование в формате AMSBIB
\RBibitem{CasKoi13}
\by Alex L\'ucio Castro, Jair Koiller
\paper On the Dynamic Markov–Dubins Problem: from Path Planning in Robotic and Biolocomotion to Computational Anatomy
\jour Regul. Chaotic Dyn.
\yr 2013
\vol 18
\issue 1-2
\pages 1--20
\mathnet{http://mi.mathnet.ru/rcd92}
\crossref{https://doi.org/10.1134/S1560354713010012}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3040979}
\zmath{https://zbmath.org/?q=an:1303.37040}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/rcd92
  • https://www.mathnet.ru/rus/rcd/v18/i1/p1
  • Эта публикация цитируется в следующих 4 статьяx:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024