|
Эта публикация цитируется в 5 научных статьях (всего в 5 статьях)
On a Partially Hyperbolic KAM Theorem
M. Rudneva, S. Wigginsb a Department of Mathematics/C1200,
UT Austin, Austin, TX 78712
b Applied Mechanics and Control and Dynamical Systems,
107-81 Caltech, Pasadena, CA 91125
Аннотация:
We prove structural stability under small perturbations of a family of real analytic Hamiltonian systems of $n+1$ degrees of freedom ($n \geqslant 2$), comprising an invariant partially hyperbolic n-torus with the Kronecker flow on it with a diophantine frequency, and an unstable (stable) exact Lagrangian submanifold (whisker), containing this torus. This is the preservation of the exact Lagrangian properties of the whisker that we focus upon. Hence, we develop a Normal form, which is valid globally in the neighborhood of the perturbed whisker and enables its representation as an exact Lagrangian submanifold in the original coordinates, whose generating function solves the Hamilton–Jacobi equation.
Поступила в редакцию: 26.08.1999
Образец цитирования:
M. Rudnev, S. Wiggins, “On a Partially Hyperbolic KAM Theorem”, Regul. Chaotic Dyn., 4:4 (1999), 39–58
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/rcd918 https://www.mathnet.ru/rus/rcd/v4/i4/p39
|
Статистика просмотров: |
Страница аннотации: | 77 |
|