Regular and Chaotic Dynamics
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Импакт-фактор

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Regul. Chaotic Dyn.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Regular and Chaotic Dynamics, 1999, том 4, выпуск 3, страницы 45–52
DOI: https://doi.org/10.1070/RD1999v004n03ABEH000115
(Mi rcd911)
 

Эта публикация цитируется в 9 научных статьях (всего в 9 статьях)

On the Case of Kovalevskaya and New Examples of Integrable Conservative Systems on $S^2$

K. P. Hadelera, E. N. Selivanovab

a Mathematische Fakultät, Universität Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
b Department of Geometry, Nizhny Novgorod State Pedagogical University, 603000 Russia, Nizhny Novgorod, ul. Ulyanova 1
Аннотация: There is a well-known example of an integrable conservative system on $S^2$, the case of Kovalevskaya in the dynamics of a rigid body, possessing an integral of fourth degree in momenta. The aim of this paper is to construct new families of examples of conservative systems on $S^2$ possessing an integral of fourth degree in momenta.
Поступила в редакцию: 06.01.1999
Реферативные базы данных:
Тип публикации: Статья
Язык публикации: английский
Образец цитирования: K. P. Hadeler, E. N. Selivanova, “On the Case of Kovalevskaya and New Examples of Integrable Conservative Systems on $S^2$”, Regul. Chaotic Dyn., 4:3 (1999), 45–52
Цитирование в формате AMSBIB
\RBibitem{HadSel99}
\by K. P. Hadeler, E. N. Selivanova
\paper On the Case of Kovalevskaya and New Examples of Integrable Conservative Systems on $S^2$
\jour Regul. Chaotic Dyn.
\yr 1999
\vol 4
\issue 3
\pages 45--52
\mathnet{http://mi.mathnet.ru/rcd911}
\crossref{https://doi.org/10.1070/RD1999v004n03ABEH000115}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1777879}
\zmath{https://zbmath.org/?q=an:1012.37037}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/rcd911
  • https://www.mathnet.ru/rus/rcd/v4/i3/p45
  • Эта публикация цитируется в следующих 9 статьяx:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2025