|
Эта публикация цитируется в 6 научных статьях (всего в 6 статьях)
On Integrals of the Third Degree in Momenta
H. R. Dullina, V. S. Matveevb, P. Ĭ. Topalovc a Department of Applied Mathematics,
University of Colorado
b Institut f. Theoretische Physik,
Universität Bremen
c Institute of Mathematics and Informatics, BAS,
Acad. G. Bonchev Str., bl. 8,
Soa, 1113, Bulgaria
Аннотация:
Consider a Riemannian metric on a surface, and let the geodesic flow of the metric have a second integral that is a third degree polynomial in momenta. Then we can naturally construct a vector field on the surface. We show that the vector field preserves the volume of the surface, and therefore is a Hamiltonian vector field. As examples we treat the Goryachev–Chaplygin top, the Toda lattice and the Calogero–Moser system, and construct their global Hamiltonians. We show that the simpliest choice of Hamiltonian leads to the Toda lattice.
Поступила в редакцию: 31.08.1998
Образец цитирования:
H. R. Dullin, V. S. Matveev, P. Ĭ. Topalov, “On Integrals of the Third Degree in Momenta”, Regul. Chaotic Dyn., 4:3 (1999), 35–44
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/rcd910 https://www.mathnet.ru/rus/rcd/v4/i3/p35
|
|