Аннотация:
A variant of Kolmogorov’s initial proof is given, in terms of a group of symplectic transformations and of an elementary fixed point theorem.
\RBibitem{Fej12}
\by Jacques F\'ejoz
\paper A Proof of the Invariant Torus Theorem of Kolmogorov
\jour Regul. Chaotic Dyn.
\yr 2012
\vol 17
\issue 1
\pages 1--5
\mathnet{http://mi.mathnet.ru/rcd90}
\crossref{https://doi.org/10.1134/S1560354712010017}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2886622}
\zmath{https://zbmath.org/?q=an:1252.70033}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000300292000001}
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/rcd90
https://www.mathnet.ru/rus/rcd/v17/i1/p1
Эта публикация цитируется в следующих 4 статьяx:
Qi Li, Junxiang Xu, “Persistence of a class of degenerate hyperbolic lower dimensional invariant tori in Hamiltonian systems”, Journal of Differential Equations, 433 (2025), 113227
Massetti J.E., “Normal Forms For Perturbations of Systems Possessing a Diophantine Invariant Torus”, Ergod. Theory Dyn. Syst., 39:8 (2019), 2176–2222
Abed Bounemoura, Stéphane Fischler, “The Classical KAM Theorem for Hamiltonian Systems via Rational Approximations”, Regul. Chaotic Dyn., 19:2 (2014), 251–265
Andreas Knauf, Mathematische Physik: Klassische Mechanik, 2012, 367