|
Эта публикация цитируется в 12 научных статьях (всего в 12 статьях)
Qualitative Aspects of Classical Potential Scattering
A. Knauf Mathematisches Institut der
Universitaet Erlangen-Nuernberg,
Bismarck str, 1 1/2, D-91054, Erlangen
Аннотация:
We derive criteria for the existence of trapped orbits (orbits which are scattering in the past and bounded in the future). Such orbits exist if the boundary of Hill's region is non-empty and not homeomorphic to a sphere.
For non-trapping energies we introduce a topological degree which can be non-trivial for low energies, and for Coulombic and other singular potentials. A sum of non-trapping potentials of disjoint support is trapping iff at least two of them have non-trivial degree.
For $d \geqslant 2$ dimensions the potential vanishes if for any energy above the non-trapping threshold the classical differential cross section is a continuous function of the asymptotic directions.
Поступила в редакцию: 16.04.1999
Образец цитирования:
A. Knauf, “Qualitative Aspects of Classical Potential Scattering”, Regul. Chaotic Dyn., 4:1 (1999), 3–22
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/rcd892 https://www.mathnet.ru/rus/rcd/v4/i1/p3
|
|